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THE NUMERICAL SOLUTION OF COMPRESSIBLE FLUID FLOW PROBLEMS
By Howard W. ~mmons

‘- May 1944

● P stagnation = ~
+?

Page 12, line 16: Change
P.

T
r s-s o
Ib P

-—

to read ~agnatio~ = e R
●

P.w

Page 16, paragraph 4, line 9: Change l’. . . upper left of
each net point . . .’1to read “. . . upper right of each
net point . . .Ii

● Page 20, equation 25, first part of second line: Change
—-

-,-
.4

Page 25, line 14: The eentence “The balanced case is impor-
tant since it insures zero rotation for the adiabatic flow
of a gas from a large region of zero velocity even though
the temperature is not uniform there,!! is incorrect, It
can be shown that

for flow from a reservoir of nonuniform temperature To.

* dTPage 26, equation (39c): Change CT ~ - R= to read.
P

dl?
cv——

T
R~C

P

&._
Page 28, line 7: Change q cr critical velocity = * a2

-.

+ Y–1 z

“i? Y+lq to read qcr
{

2critical velocity = .—
‘Y+l

az

v2

“b Y –1 q;
‘Y+l }

R Page 29, equation (49): Change Axy . . . . for any func–

t i>n iq) (X,Y), to read
—

. Axy . . . . for any function ~x,y,
f

“d Page 29, sentence following equation (54):
*

Change “equat ion
..1 (48) follows.” to read “equation (49) follo~~cll <-.

v7.,.
●

~

.-
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Pa”ge 30, equation (22): Change the term $m
(’n <)

q
.

.-
to read On

. (’%).

, Figure 20_, equation for figure reads:

Change to read,:

Figure 22, equation for figure reads:
.

I
-,

●

.4

I

*

Change

P~—=
poao

to read:

Y-1

~ Pp

o

T1

Popo
e 1]

1 h
s—so

R Pp

POPO

1 Y-1 s-so

e
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TECENIdA% IKMCE NO, 932

THYJ NUMERIGJXL SOLU!lIOII or CO?iPW%SIBLl! JJ’LUIDFLOW PROBLZIMS

By Heward 1!. Emmens

SUMMARY

Numerical methods have been developed for obtaining
the stedy, adiahatie flow fielil ef a frictionless, per-

feot &as, about arbttrary two-dimensional bodiee~ The
solutions inc~ude the subsonia vel~eity regions, the super-
sonic velocity regions, and the trans$.tlbn com~ression
shocks$ if required. 3’urthermore, the relational motion
and &ntropy changes following shocks are taken into ao-
cGunt 9 Extensive uss is made of the relaxation method.

In this report the aetai3s of the methods of solution
are emphasized so as to permit ethers to sol,ve similar
problems. Solutions already obtained are mentioned only” ‘–
IIX way of illustrating the possibilities of the methods
descrt%ed.

Yhe nethods can be applied directly to wind tunnel
and free air tests of arbitrary airfoil shapes at sub-
sonic,” sonic, and supersonic speeds,

INTRCKN3U!TIOI?

The knowledge of the flew of inc6mpYes&ible fluids
about hodiest especially airfoil shapes, has been greatly
advanoed by the interpretation of good experimental r“e-
sults in the light of theoretical predictions. The first

‘~.successful ? easiest, and most widely us@ful theoretical
“results have come from a consideration of the two-dimens-
ional il*rotational flow of an incompressible perfqet fluid.

Z!he howledge of the flew of compressible fluids
has made good progress in exact%y the swe way for two “
widely separated conditions+ 3?irst, linearization and

.. .—-.
- *-= .

.-

- ,__.._
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.—

. .
.
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perturbation methods yie%d helpful information up to
moderate volocitiest a Mach number from 0.5 to O*7 de-
peading u~on the body. Secondt the method of character-
istics throws a great dea~ of light on completely -
supersonic flows. Analytical difficulties have to date .
prevented the extension of theoretical results to many
flow problems in which both subsonic and supersonic
velocity regions occurt A. Chaplygin, Ringleh$ and
Wollmian (references 1, 2, and 3) have obtained a few
suggestive exact solutions tnvolving subsonic and super-
sonic velocity regions. !!eyer, Taylor, anti tX5rtler (ref-
erences 4, 5, and 6) have studied in a crude approximate
way the passage through sonic velocity in a nozzle, Xone.
of these nethods of solution is able to fit arbitrary
body shapes and is completely incapable 02 predicting
the-occurrence, Iocationr and shape of comprassiozi shocks.

When shocks are present in a solution, the asumy
tio~ of ir.rotationality of the flow of a compressible
fluid is, in general, no longer correct. Special forms
of the equation descri%$ng the rotational motion of a
gas have ‘oeen discussed hy Friedrichs and Crocco (ref-
erences 7 and 8). 4 consideration of the complexity of
these equations together with the almest insurmountable
analytical difficulties encountered in attempting solu-
tions of adia%atic, frictionless, irrotational, shock
free flow uakes it obvious that analytical solutions of
general high velocity problems are not likely te he found ‘
in the near future.

A new, rather g&&al idea was introduced into the
numerical solution of difficult problems during the
nineteen thirties. R. V. Southwellts relaxation method
“(references 9, 10, 11) permits the solution of prbb3.ems
of the flow of incomp$essib~e, perfec$ fJuids with great

.-

ease , and is readily adapted to the solutioa of subsonio
.-

problens of adabatic, frictionless [noij necessarily
irrotational) flgw. The relaxation method is not d.trect-
ly applicable to supersonic velocity regions, but an al-

.

ternative procedure based upon the use of the $i~ite
difference equations has been worked out, ~inally,.the
fitting together of the subsonic and supersonic regio”ns,
adjusting t~eir shape and size with compression shocks,

t if necessary, is accomplished by a combination of methods,
-.

This investigation, conau~ted at ~.he Harvard TJn$versity
was sponsored by, and conducted V$th financial assistan.c”e-:
from, thf3 National Jldvi.gory Committee ~oy boro~au%~crj. ‘ ““”‘-- —.-

. -.

.
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SYMBOLS

a kcoustio velocity

6P; & ‘apecifla heat at cens%ant pressure aa~
volume, respectively

(3 constant

D reference dinension ee%ting phys$cal ecale ef at*r-
foil or tunnel

h specific enthalpy

L distance along streamline

l!=: Mach number

.
n

P

!t.

Q?

R

r

$

T

u

u

v

normal distance

pressure

velocity (components u, v)

restdual to be liquidated

gas constant

radius of curvature of streamline

specifie entropy

absolute temperature

velocity component in x direction

velocity of undistu&bed stream

velocity component in y direction
.

X,y coordinates in physical plane

%Y=— Isentrop%c exponent
av

.-
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6 lattice spacing in computations

A ahange crf a quantity or the Laplace operattir

@ Scalar var$able

4

.—
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.. -+

. .._

—.

to rate of rotation

Subscripts

i. incompressible fluid

X=:,Y=: denote differentiation with respect to “-
dinensionleee coordinate in the .
physical plane

1,2;3,4,0 3attice points

o i~entropio stagnation conditions for undisturbed
strean

.

R31dQL&TION SOLUTION OF NIX F$OW OF IN’COM3’RESSIY3LX FLUIDS

Qhe two-dimensional irrota$ional flow of an in60h-
Pressihle f3.uid is described by either of the equations

,--- .-,-
Av= -0 (~ is the stream function) a)

. .

-. —

7
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. .

where tho velocity components are given by-.

* ‘i=’(+):-’($) —
..-’

c)

TO .fifidthe flow about a given air foilj it is necessary
to find a solution to one of the equations (1) subject to

:’ the boundary conditions that the surface of the airfoil -

is a streamline and conditions at tnftni$y are uniform.
Thus in figure 3, the boundary conditions WOUld be: ____

,-

*

m
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..f For the stream funct%on

~=aaortstant
-.

V=-ncaty

●

.

.
“

.,

.*

*

.

7

‘Y’orthe velocity potenb%al

a!

m=Oat y=I-c,h
3

g_J&s forx+!k=

(3a)

—

(Sb) _ -.

The Joukowski condition of no f3.ow around the trailing
edge must be added. .-

TO solve equations (1) eubject to conditions ~3)
for an arbitrary airfoil shapes the relaxation method
is by far the m~st praotica%. Chri@tophereAn -and
Southwell in reference 10 dfscuss the ~ethod in a general
way; Emmons in reference 11 gives a more detailedT:gPli-
cation to the solution of the Laplaoe equation,
method is outlined below.

The destred equation, ~aY (la), iS ~xitten in the
ap roximate finite difference

7
form (see ??eference 10 or

21 2

(4)

where no is the value of ~ at an arbitrary pbint. in
a square net of pointp (seq fig. I_) and 711, %la ~3b . :

~4 are the val~ee o: ~ at the feur surroudinic points.

,
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Zf by some process values of U were attached to each
point, equation (4~ would immediately show whether or
not they approx~mated a solution of It&place’s equation.
If the attach~d values do not satisfy (4), they define
a residual Q at each point.

(5)

Observe that a ohange ef value of no by 1, all other
n’s held constant, would change tbe value of the Q’s
at various points as shown in figure 2, Thus the residuals
may be moved at will frem any g“fven point to the surrounti-
ing points. This process is physically equivalent to re-
moving restraints from a teasion net; hence the tern
“relaxation method.n Figure 2 ig calle~ by Southwell the .._ __
rel.axati”on pattern. It gives at a gla~ce the influence
coefficients for t~e effect of chang~~ of TI on the
residuals. This relaxation process is followed step by-step
until all tnterior Q are zero and the boundary-values
are as desireti.

.

Q+1 .

.- .

. .

Figure 2

..”
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To calculate the flow about an airfoil, take the
following steps: ,

1. Draw the air fbil and flow region to a scale ‘
such that the distance between net points, as 6 in
figure 1, is about 1* inches. Do not use too many
points at the etart. Those shown in figure 1 are ade-
quat e. ?o,r greater accuracy more points can be added
in important regions, as near the airfoil, dur$ng the
course of solution, —

2. With the boundary conditiane in mind, guess
7aluee of II at the net pointe, and compute the residuals.
To aid the accuracy of guessing, a freehand sketch of
streamlines and potential lines is sometimes useful.
Use whole values of n ranging from say O to 1000. It
is convenient to record at each net point values as in-
dicated in figure 3.

-...
# .

Q. ● n guess

Qx ATI1

Qa ATIa

ete. etc.

Qf imal ‘final

,
Figure 3

Y

.

3. The residuals are relaxed, each time reaording a%
each point the change in q and the resultant Q. IrI
this way the points at which the residual is largest oan
be spotted at a glanae and relaxed next. Change q by
simple whole numbers only.

4. After all Q have values between *2 (moTe
decimal to position of desired accuracy) add changes of
n to get the final value (fig. 3) at each Po~nt*

5. Reaompute Q by equation (5) to locate any co-
putatlon errors. Relax resultant Q if any.

!.

-- d“
1
..
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6. If the solution is not accurate enough. additional.

.
*.

. .

-. point s-ara added where needed. In figure 1.~a~y more
points are neetied near the airfoil. The process 1
through 5 is repeated as prevtous3y mentioned,

?, ?he re~uired results ~ $or example, pressure
distribution x can be computed by use of equations (2) “
and 33ernoullits eqtzat.ion~ The accuracy of a13 the 2e--
sults can be ati any time impraved by adding nore points
to tho net used in the solutitoas.

.

0

Z!he boundary values as given will be information
about values of the desired function or values of the
normal derivative of the desired function as in equa-
tion (3). When the physical boun~ary &uns between net
points,.it’ is sufficiently accu%ate to set values at the
nearest not points by l’inear interpolation or extrapola-
tion. ..

-.

As will be descri~e’d in a follewing section, the
flow of a compressible flui~ is best accomplished by
making use of the streamlines and potential lines of the
irro.t’atioqal flow af, an, incompressible fluid about the
same body-

.—
-.;

. .

.’ -..

.

I?ifferontia?, Xquations and ~oundary Conditions .

for the Adiabatic plow of a X%ictionless Perfeot Gas

The motion ●f a compressible f~uid is described by
three laws of nature: namely, conservation qf matter?
energy, and momentum together with the ‘properties ef
the fluid and the boundary conditions of the particular
problem on hana. The second Zaw of thermodynamics ,makes
a restriction on %@e tyqe of discontinuity (shook wave)
that can oocur.

.

.
‘b

In the following, the fluid will be taken as a ‘
$rLi3tionless, perfect gas? “The flsw will be assumed
adiabatic. Thus i~ the absence of compression shocks
the flow will he isentropl.c, The changes of entropy in
the compression shocks will he considered in detatl later,

If* in addition ;O the assumption of an aaiab”atii-”- -
flow, steady $Xow is assumed, the energy equation ~tates
that

.
.

ho.h+$
.

“.‘

.
.
.
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is constant along a streamline but may d%ffer in an arbi- “
tra.ry way frem Qne streamline %0 the next. I?or all oases
assuming unif~~m conditions at infinity} the stagnation
enthalpy, ho, is censtant everywhere. This assumption

is usually adequate but, if not, %t would not materially
complicate the method of solution.

The continuity equation in rectangular, X* Y coordi-
nates is

.

This equation permits the int~oduetion of the $trean
function ~ defined by

(7)
.

The substance of the equations of motion for an adiabatic,
fricti~nless flow are summed up in the equations (see
appendix 1 for derivation)

— .

—

where the entropy “ s and the stagnation eat ba~py he
are constant along a streamline. Generally, s and
ho are both constant everywhere frwm which the fl~~ ie

—.

seen to’ be “irrotat% onal.

~quattons (8) substituted $.nto equation (9) ytelds
the fundamental cliffereatial equat ion to be solved . -.-.

(imi)
—

The following form of equatton (10) is generally more.
convenient for numerical solutioa,

--

. .
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If the densfty is constant an~ the retation $8 zero,
this equation reduces to Laplace~-s equation as used in
the previous section. The valuee of the density ratio,

P/Poo to be used in equation (10) aae obtained from

(see appendix 2 f’sr derivation) ‘

“p. + - WJ}A‘-Y “i)

.

(32”)

ah

pq = {(,ul’ +(Pvt’)’’’=f$\- .-
Thus the density is g$yen dubing the course of solution
%y a relation

This relation *S plotted as computation figurO. 12,

-.—

It sh#uld be noted that the entdopy increase is
simply related tts the $hange in total pressure in the
absence of heat transfer and friction: !l?herelat$en

s-so
?stagnatio~ . ** ~

has beeh ylotted as amputation
P.

figure 25.
.

This relation is only correct whanTJ~e
stagnation enthalpy is constant everywhere. s-so

T
term is used directly in tb$s report $n spite of ~he .
experimental stgnificanoe of the, stagnation pressure
ratio because of its ease of use and its more fundamental
nature in equation (9),

.-

During the course of a solutlon the values o: ~x”

and VY a%e periodi~al~y introduced into equation (12);

In p/p.m is then evaluated from ~o~putation figure 12

——
—
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The boundary coadit$ons, as for incompressible fluids,
me commonly taken as uniform properties and velocity at
~nfinity and a eertuin’few streamlines speoified by the
surfaces of bodies {airfoi3) and f$ow passages (wind
tunnel).

~t was acted in the previou~ section that the solup
tfon of the flow of azt !ncompressibla flui~ about an
airfoil by the relaxation methad required speoial atten~
tion to the boundary conditions ‘when the net points did
not fall direct%y on the bountiary itself, !Che flow Of a

compressible flutd, “espe~tally nea~ the epeed of sound,
involwes so maay difficulties that tt is desirable to
avoid the boundary conditton trouble. z!his ifa easilY
done by us$ng zis a uoerdina%e system *he streamlines
(~ = const) and potential lines (~ = c~n$t? for the tr-
rstati~nal flew bf a perfect inconpree$$b~e f~u~~ about
the same airfo%l. Figure 4 shawe the airfeil in the real
plane and the simple straight line %oundtiries required
in the transformed plane. Another advantage of these
coordinates cam be antZcipate& since the csompre$sihle
fluid streamlines will not deviate too greatly from the
%xcompressible streamlines (~ Oonst)+

This transformation Of Coordinates ‘is eonformal and
for- any contormal transformation equa~ions ~3Q atb)
become (see appen~ix S)c

.,

(14a)

.

.—

.-

—

_-
-.

Tho differential equation for ~
..—.---

has the same formal
appearance in the physicaL plane and in the transformed
pl{~ne (stnce for nearly a~l work the .m term” i.s negli-
gible), b important difference appears iII the &~ermi-
na%ian of the compressible flu$d density durin

—

course of the solution. ?)$n p3aee of equatf~n 12 S.the
following equation is useti (see appendix $);

!.(35) . -.----
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The diensity iS again calculated ty equat%on (13), oompu-
tatton figure 12,

‘ To determine; by equation (15), the value of the
fluid density at any poiat reqwires at that point a
knowledge of the * gradient. For a solution of the
problem ,by a net of points there is “some error invglv’ed
in evaluating the gradient. The simplest reasonably acq

curate procedure 1s to calculate, for ezample~ WV at
a given point as the difference betweem the values of
~ at the preceding and follotiing points &lvided-by the
corresptiiiding change ef a=2d, !?his method works well
at all points away from the boundary! For bcmndary
points there is no tinext~ point fsoin which te get a slope.
Of course, any mtbod of determining an aP??roxiJQate value
of Inp would be satisfactory so long as the value
would approach the correct value as the net interval
5 -> 0. H@wever, tt ie very desirable to choose a .
method of finding ?np at the heundary as accurately as
possible so that a relatively coarse net {large 8) will
give as adcurate a result as possible. The following
preoedure give~ very good results. .-

03serve, first, that at the ‘boundary compressible.
($) and incompressible {~) streamlines coincide and hence

;.

the radius of curvature of the$e streamlines ‘~s the
The kinematic relation for the rotation of fluid

~;~~~nts (equation (29), appendix 1) gi~e8 .:T. -.

A J&.$9-a+=.-
r ~

(16}

Since u is generally negligible, thi”$ equation shows
that alohg the nbrmal tb the boundary;’ that is, along
constant ~ lines, the ratio of compressible te incom- J
pressible fluid velocity (q/qi) is constant. Th%s re-

la%ion is very good ft?b~ ~ounclary pd$nts to those next
along the k constant Ztnes. In this way accurate
valuee mf q at the boundary are computed and thus Inp
by computation f%~e 13.

Relaxation Solution of Subsoq~c Flew Problems —

In the relax tion solution .of a non~l$near equation
,

such as equation ?)14b , there are taeve@&l possible

.
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procedures, the relative excellence ef which depends
upon the relat~ve magnitude of the various terms. The
following method has been found very satisfactory.

!i!heequation (14tJ) for the stream functfon ~ 3s.
put tato a“tiim;nsionless form which perintts ready change
af scales.

where $0 is $ dimensionless constant to be choseu by

the computer. 3y equations (14 a,b)

M!%%9’M%-%$)”“ .-, “
or

#

—

,

.

Equation [15) is also altered to
?

*

.. .

.

~tie equation (t8h) fcm the stream function $C is put “-
into finite difference form as fell.ows$

and equation” becomes ~

,
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“. (21)

●
where *O has been chosen equal td 26 for conven~enoe,

The best procedure found to date for the solution of
equation (20) when the velocities are subsonic is to*
ti’6atilthe last three terms ae corrections. The eOIU%~O;” “

. psS6eeds from assumed values of W1 to the removal of
the Q by the relaxation pattera based upon the first
five terms; that is, the s~xne relaxation pattern as for
ineempressible fluids (fig. 2), Tbe Q =8, however,

● computed eorreotly by equation (20). Per$.odtcal$y during
the solution the Q -are recomputed by equation (20) to
take account of the changing values of log P~Po and

In the $Ollowing Ii&t, the Var%ous steps are il1u8-
trated by the sozution of the flow of a compressible fluid.
th~ough-ahyper~olic channel (fig. 5).

. 1. Calculate the flow of an incompressible fluid
through the same flow spsten using, if necessary, the re~
Iaxation metho~ as described in the section, Rel&xation

-. Solution of Incompressible Fluid Flows+ Of couree~ if
an analytical selut~on is known, th~s can be u$ed, In
figure 5 is shown the streamlines and velocity potential

v lines Sf the flow of an incompressible fluid through a
hy~erb~lic channel.

2. Draw the flow region on k, ‘Q coordinates to a ‘
sufficiently large scale to make room for the following
steps of computation to he recorded at each net Toint- .

●

~igure 6 shows (1/4 of) $he hyper~o>to channel drawn i-fi
the t“{, ~“ plane. Of course, any shape channel would

. fall in thq same region of the !., n plane. The $.m-
0. partant numbers obtained in step 1 are the dimensionless ~“ __ ,

incompressible fluid velociti,es~ q~ ● The:e4Fare ““plotte&
. .

in figure 5 and are recorded at the upper &@% of,each
? net point (fig, 6). The qi are dimensionless since ‘the—

velacity at the center of the passag~ tW. O, T* O’ was
-taken as 1. If an airfoil with lift is to be %reated,
the ~~ ~“ plane would appear as in figure 4 with an upper
and lower half discontinuous aczro$s the half-liqe T = 0,
~>o.

.—

,-.

1 .....
.

--
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3, Choose the desired boundary conditions for the
preblem. This is not as easy a matter as for incom-
pressible fluids wher,e neeessary and sufficient condi-
tions for the existence @f a solution of Laplacers

equation are known. Foe the hyperbolic channel, it.was
dectded to specify: s~mmetiry ab?ut the x =6 Y axis~
uziifora ~rogert%es and zere velocity fw x + +=, ir- ‘
rotational notion throughout. M at the center of the
passage x = y=o. For physical ’reasons, the 6olution
of this problem is known to be un$que- Notice that it ._ __ ~
is possible to specify, for example, the total flow
through the passage in place of some of the aforementioned
hut that then the solution would not be unique.

4, Vith the boundary conditions in mind, guess” values ‘- ““
of the strean %unct$on ~i. In the particular case of
the hyperbolic ~haunel shown in figure 8, M was chosen

P~as 0~85 at t13e denter< At this point, therefore,
K

= 06568 by computation figure 14, With ~ chosen as
0.15, *O = 26 = 0.309 Henae w:(~ = 0, q = 0,15)--W I(O*O)

M & = 0,568
=lllqt?l‘—

Poao
— = 00284,

~i~~ 2
To avoid continual

-—
use of small decimalsl 2000 t$.mes this number is recorded
in figure 6- The remaining $! values along t = O were
set by using $t approximately proportional to W 1 for
a solution alrea~y obtained for M center = 0.80. A good
alternative procedure would have been to assign &

constant along ~ = O {see equat~on (16)). Having aa
approximate $! on the boundary Q = 0.6, it is constant
for all t. “F~r ~ large, *’ 1s divided proportional
‘to ‘q. Xinally, all Penlaining valueg of V) are put in
by guess.

5. Compute the auxiliary quantities and the residualtiby
equation (20), Vhe var%ous values are arranged around the .
point, as in figure 7. Note that the $~t( in p/po) term
has been omitted. This is possible only because it is
of insignificant magattude in the present case.

●

.

.

.
. ..

.
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11’igure7

●

:

w

.

.7

*

.
*

. .

.
.
-

6. Relax by figure 2 to eliminate the residaalta, Q.
Periodically the error must be recomputed to take cor-
rectly into account the change of the ~q’(ln p/po)

term not included in the relaxation pattern. When near

Pq
the vertical tangent to the lm pjpo -— curve

poao

(i.e. near M = 1), it is sometimes more convenient to
change the z~ P/Po instead of ~ ‘.

,

7. Add more points where greater accuracy is required
and recompute as abeve.

8. The required resulte are computed from the * I
gradisnt values, equation (21), and the various computa-
tion curves. In regione near M=l, the desired
results may be more accurately determined from the values
of ‘n p/po* In the case of the hyperbolic channel,

figure 8 shows the distribution of velocity. In the
ease of an airfoi2, the most important results would be
pressure distribution and lift. Computation figures 20
and 21 will supply the pressures. The lift can then be
obtained by integration. Finally the lift, or pressure
coefficient, can be found by using the value of 3/2 p qa
from computation figure 22. The undisturbed stream dynamic
head is generally ua~d and therefore the effect of en-
tropy on the 1/2 p q againe t M relation has not been
includkd hi computation figure 22.

‘.4
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Treatment ef Supersonic 3’Iows, Especially Supersonic

Regions in an Otherwise Subsonic ~low

AS the speed of sound iS approached by the fluid,
the density-mass velocity relation approaches a vertical
tangeht as in computation figure 32. In this region the
relaxation pracess is still able to yield a 6olution hut
the effect of changes in ~t(or In p/po) must be watched

P

●

✎

very closely so ae to avoid making resMu&suorse rather
than better,

The relaxation prOCeSS, the removal efrestduals 2Y

arbitrary ohanges ef the dependen~ variable, becomes
confusing for supersonic velocities. Yhe following
tentative method of saluti.on has”’been found adequate for
the problems solves te date.

;

:

The reiatioa useful near the boundaries, equatien

(16), %s apPrbxirnately correet threughtmt~ the flow field
and suggests working with q/qi as variable j.nplace of
of Inp, AS shown in appendix 4, equati”o~ (10) becomes

—

. .* —...—=
-:

(22)

This equation would be no improvement over equati.en (lCI)~
except that the last three te$ms are generally very
small. The first two terms then give”

●

(23).
B

.=

. .
If dimensionless variables are again introduced through

(24) ,

.

there results
—

.-#

.
.- --y-
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A solution o%tained with q* constant, if such that the
last three term~ of equation (25) are really neglfg~~le.s
can be checked most easily by noting the ralue of
(Wm’)gg .which is the ’residual.iuthe equation (see ap>

pendisc 4)

A eolution is obtained ia the following steps.

1. -Zay out the problem as fer a subsonic velocitf

solutton fol~owiug steps 1. 2r and 30
.-

2. On each ~ constant line choose a value of
q* = constant. By means of computation figure 14 determine
the value Qf W

7
at each net point N@’ if not ::::i-

gible can be ee imabed later and correc%ed for)~
grate *O %0 find * and to abeck the.%oundary c~ndition
(when a streamline 1S given as at the surface of an atr-
foil or passage), If ~ does pot eatisfy the b@.m&ary
oondition, a new va~ue Of ‘q* is chosen and the compu-
tation repeated until it does.

3. The so3utioQ to this point has been obtained as
a oneqdi.meusional solution along velocity potential

lines, each Ilne being sol~e~.$n~ePendent of the ‘thePsS
The residuals(of the $q) can now be avalvated from equa-

14
.

r.
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4. lfake adjustments to eliminate residuals. No definite
instructions are given at this point because, to ‘date,
the residuals:have been so very small that almost no ad~ust-
ment has been requfred~ l?i~re 9 shows the subsonic-
suporsonic transition in a hyperbolic nozzle obtained as
outlined previously~ This corresponds to the soluti Qn -
first obtained by a series expansion by Meyer (see refer-
ence 4).

Solutioas with Compression Shocks

:

*

.

&

. .

.
.
.

Since many practical gas dynamics problems start with
gas of uniform properties and velocity, it is generally
not necessary to consider variations in entropy. Thus
all the computation curves with varyin’g entropy are not
needed. As ,soon as supersonic regions appear, dlsuon-
tinui%ios may occur in which the velocity drops and the
pressure rises over an extremely short distance. Com-
prossion shock, as these phenomena~e called, is well
known in the literature (see, for example, reference 12}.
~oin~>r~ssion shooks give rise to several effects not
gonorally included in fluid mechanics soluti6ns. In the
first place, a compression shock involves the dissipation
of uochanical energy resulting in an $ncre&se of entroPY
(s00 computation fig. 35). The entropy rise increases
with an increase of the supersonic velocity of the fluid
ahead of the shock measured relative to the shock, If
tho shock is oblique to the approaching stream! the
normal component of velocity suffers a sudden change and’
henco tho stream turns abruptly through some angle (see
computation ffg. 16). The e~tropy change through a
stationary shock is thus dependent upon the initial
stream lIach number and the shock obliquity,

.—

.

.—

In tho stream following a shock the entropy remains
constant along each streamline, as shown in appendix 1,
but now the entropy is not constant throughout the region,
Thus in the course of the numerical solution carried out
exactly as indicated in the preceding sections, it is
necessary to look up values on the computation curves at
tho entropy appropriate to the streamline passing through
the particular point in question. Thus each time a COM- -

putation curve must bo used., the current value of * at
that point must be observod and thg value of tho entropy
appropriate to it must be used. & the solution pro-
grossos end the values of V at points change, corroc- “-
tion for tho attendant changes of tho o~t$opy must “be
mado poriodicallyq

.

.
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This does not end the dfffi-cul.ties. If a shock wave

is curved, or cresses a region of nonuniform (but ir-
rotational) ve~ocity, the velocity after the sh~~k will
noti in general h,e distributed properly for the flow to
be irrotational. Thus the rotation term on the right of
equation (10) cannot be ignored in the flow follow$ng a
shock wave. Quantitatively, the rotation following a
shock is obtained by equation (9) from t4e c~a~ge of em-
tropy tetween streamlip~e, which in turn is obta$ned from
computation ft.gure15 and the, shock.

Note that along a given streamline the rotation is ‘
not constant but is proportional to the pressure {h. 5.s
still constant everywhere %$ the a$sV@Pt$ons of adiabatic,
frictionlessf30w and uniform oondi%ions at infinity).
Thus in a region of flow follewing a shock, equation (20)
becomes, using equation (9).

and A.& 5. g~ve~ on computation fi~es 23 aad 2’$. ... .
POPO

!Nio final ~iff$culty to be met is the fact that the
shock Is merely a ‘}beundary conditionti %etween a super-
sonic region and a subsonic region~ Generally, given a
solution with a shocks it is possible to extend the super- ‘-
sonic region beyond the position of the shock (at least a
short distance) were it not present and to extend the sut-
sonic region likewise. Thus the shock is a wave which
moves tack and forth until it has a magnitude which permits
it to assume a steadyc fixed location in the flow, The
nature of the supersonic flow field ‘~extendedm and the
Sul)sonic f3.ow ffeld ‘iextendedff deter~ine~ the atabilitY
of the shock wave, Experimentally shock waves are fre-
quently found to waver or vibrate.

Actual solutions containing shocks are ob$~ined in . . ..__

.-

—

—

..-.

..—-
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1. A problem is solved as previously described, in-
.. eluding regions of supersonic Velocity. .

.

.

.
9

:

.

.

●

-.
.

. *

. .

.

.
.

2. A shock is arbitrarily placed in some location
ih the supereonie region. The more information, experi-
mental. or ●therwise, about the probable location and
shaye of the shock wave, the better.

3. With this shock fixed the flow in the region
following the shock is determined hy the shock boundary
conditions of stream function aad entropy dlstri.bution.

4. On completing this solutien by relaxation a check
at the shock will generally show that ”khe streamline
direction following t~e shock does not agree with th$

shook obliquity assumed. The ebliquity is changed to get
agreement of direction of the stre~mlines and step 3 is
repeated.

5. A few repetitions euffiae to get a sufficiently
accurate solution.

A solution with a shock in the hyperbolic passage
o%tained in this manner $S shown in figure 10.

.._

——

.-

(IOI?CLUSX02?S

Numerical methods fer obtaining eolutions ctf the
two-dimensional, adiabatic flow of frictionless, yerfeet
gases is described in detatl and illustrated by $olu-
tions of the flow of air thrdugh a hyperbolic passage
a+ widely vary%ng velocities.

.-.

The relaxation method applied to general passages
or airfoil shapes aan readtly supply all data desired
for the fzew of incompressible fluids, These solutlons

qan @e ~o,rrected for compressibility effecte up to the
appeavanq~ QC ~qpersonic regions bY use af the same method:

JLf’ter sup~rsoni~ regions appear, other methods de-

Pcribea Permit the further correction of the flow fer
these p$?ects. Yinally, solutions with shocks, including -
all of the attendant rotation anii entropy change effectsl
Rre o.btatned by a step-byw8tep process.” —-A-

-...
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pro%lens. 9hey permit the computer to use all of the
facts he knows abou~ the phenomena throughout the com-
putations ~ —. —.

Iiany curves presenting the properties of air as re-=
qui~ed fov these computations are appended.

-=..

Harvard University, —

Canbridge~, Mass.,, March 1, 1944. . .—-:

.
i Fbr mest fluid mechanics work, the equation of

Inetten of the fluid can be replaced by the fact that the.
velocity distribution is irrotational! ---- ----

Uor the super~”
-, santc flow of compreesib~e fluids in whiah ShQCk waves

.. eocur, the veleci.ty distribution will not be irrotational. - _ _o

*

.*
.

●
✎

.
v

. “.

.

.

~onsider a genera$ oaee cif the motion of a compres- ‘“ . . ,
sthle, friotionless, perfect gas between the curved
streamlinesef ftgure II. The fluid element rotates
shout an axis normal to the paper at rate given by

-3--2W=– : -.* (29)

The pressure gra&i-
—

q-!--?Qiin “.=
ent nornal to the an
streanline6 must pro- -x&- ...e-

az)~e s,
,. .:.-—..-,C=:

duce the centrtpetal (T* -...-.—=---

acceleration of the :.-_:
$luid element; thus du ,!I

.-—

ap = P!L2
.-

~“ -’..::

rde .._,:.—

XT (30}
—.

A “:
.. —--- ..-..=

++

Elininate r between .
— ---~(29) and (30)

2L5=–
~ ap r& (31)

..

pq x d
---:-.=--------“

#-

Figure 12- .-
.-.

. .. . .
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Introduce the stagnation -enthalpy

and the thermodynamic relation

,qad equation (31) for the rotation of
becomes

.U=$+g+)

Now introduce the stream fUnCtiQn
gas I.aW p = plZT

—=

25

—

(3>) “-

(a3)

the fluid e~ernent . _ ,----
-.:_=.- .

(34) . ......

* pqdn and the -
:-——:

The eenditidn fcr irrotationa~ motion of a Perfect .
gas is seen to be constant entirop~ and constant stag~a-” .—
ti.on enthalpy throughout the region, or else a delicate “.

...-—_ _

balance between e and . The ~alauced Gase is im=

portant sine
‘to;r:::;~y*’’*$:;:;’:;::’ -

x
flow of a gas
though the empe,ature is n uniform there. The case of

greatest importance is the adiabatic flow from uniform,
zer~cvellibity conditions at infinity. For .thf~ ca.~e ho

is constant everywhere and s is ~onstant up to the
firs-t shock wave, Thus the flow isirrotational up to
the first shock wave and rotational thereafter. -.

To find the di$tribut$.on of rotation behind the_

shock wave, differentiable equation (32) along a stream-
line, observiug that for adiabatic flow ho is constant

everywhere, ., )-

(36)



—
*

,

AISO by the 3ernouI15. equatfon ..—
. .

—.

(37)

.

According to equation (33)

The entropy remains constant along streamlines between

shocks. Thus the rotation of the fluid is proportional
.—

to the pressure along streamlines in regl.ons between
shocks . The proportionality constant varies froq stream-
line to streamline accordfng.to t@e.distribution of en-
tropy between stre’aglines produced by the shock w~v-e.

—.—— -.
—

‘

.

:

.

.

“

APPENDIX 11

THE COMPUTATION CURVES
.-
.

Most of the curves found useful in commutation follow
from these well~kqown thermodynamic relatiois for a tori-”
skant specific heat, perfect gas.

b.

----

—

./ ~
1

p = p12’2 (a)

a
h= Cp T = ~a.

-1
(b) (a9)

.
.

●

. ‘.

. The conse~vatioq of energy for the ediabatic flow ___
of.a frictionless fluid is .—

.
.
. h+~a = ho,,a constant aJ,~ng a streamline (40)

2

.,
9
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Zntroduee the aceustic velocity from [39b)

By integ~at$on of equatien (39c)

—

-..

(41)
-.

—

.. . . .==...

-.<.

-------- .—..

Computation figuresl& 33, andL4f0t20w imtie@Zately,

Equation (41) can be rew~itt~n as
.-

. ..- ......+?.=-....-.___
.

(43) . ....-.

This relation is indepepd~nt of the entropy changes and’
— -.

is given as .eomputation $igursL9, This with computation ‘ ““ ‘:.”’‘“”‘“
figu@es X2,Z3, an~ I& welds f$guree 17and 18, Again b-y (39-C)

--------
...----

v —

Q-)
Y“

{iL=e=Y\o~=e”?*Q3. ?;I c#-
P~ ( )} (44) ‘“.

This equatlonl together with i42), .perm$ts the cenatr?.g- ..,.:_...,---—*
*ion of camputat$on figures F@, 21, 23, anti 24,”- ‘“-‘- ‘-””’_ ._.~=.=

-&-
P=

*

s-so

Y_.lfasl-T_..”___ . _“. ... . . .. .
,P

t }
W2.ddF’”+i

2.

..—:---

.(45)
-. .- -.

.=
.=

.—
.. —-
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The eamputatlon $tgurs35 aaad~ far compression shocks
fellow frmn Prandt12s equation for normal shocks

● ✌

✌

.-

—

—.

—

.-

--— .

-..

~a veluetky after the shock

.
●

together with equat%ons ~39).
—.

The entrqpy tncrease through a norml shock was
Computed from

**

.

.

●

The fact that an ebtique shock is a noa?mat shes~ to a
oomponent ef the velbclty completes the $nfermatien $e-
qu!red for ~emputation figures 35 a~d,Z6,

●

. .
.

APPENDIX

The tran~formation af the qquat$on for the stream
function frem *he pb~~ical X*Y plane tie a new t,n
plane gives a simple result for a conformal transformaq
tion’, A oenfor~al transformation results for f and_ -~
such that.

.

(2), “*

.

This is equation (2) of the repo~t which defines the
stream function and veloc~ty potential of an irrotatioaal ‘–”
flew of an incompressible flutd except that, for conven-

.
.
.

* ., .. ..——— ...._
(48) “’

-.
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. .
(49)

, .
A straightforward derivation seems in this case to he

. Stmpl-astq

(50)

givee
.

b.

By equation
h.

wher e

(5i)

(52)

Returning to the phys%cal coordinates x = XD, y = mi..
. equation (40) follows.

q
Now the conversion of~the differential e uation (Zaa)

, “* for the stream function, from X*Y to ?~ coordinates
. follows immediately from th; identity

.
.
.

Thus equation (lOa) -.

.*. --

1-
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30

(lOa)

(14a)

ko get an equation for the stream function ~ with

~ as coefficient tnstsaa of tnpt begin with equa- “- -
~i --—

*ion (14’b).

(56)

where the square rook is ($OT aumerica~ coWutations)
no trouhle~ ae ite value is generally very near uaity.

Rewrite equation (14b)

and substitute from equation (66)
.
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A eone%imes more useful form of equation (22)
follows hy noting that the last three terms are generally
very small and. that the velocity q is relat-ed to the
* gradient bY the ~omputation curves. Dtffere.nt$a%e
the first two terms of equation (22) and neglect the last
three terns. —

(*n)&g + w-l }fl (“n5)’.‘+ *).. =0 (58)
This %ecomes equat$on (27), if dimensionless vaaia%les
are introduced. In the use of equation (58), the
gradient is taken as *q thq ‘~~ term being very small.

.

**
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Flow of Incompressible Fluid in a Hyperbolic Channel ‘
.2 .4 .6 .8 10 1:2 1A x

Streamlines

Lines of Constant Velocity

Potential Lines --------- k

q= Velocity

I,4

u

Fi.g.5.

I



-.

r

*

.

.e
,

w

.
“

4

. ‘h

,

.

. .

.

MAOATN No. 932 symmetrical Flow in Hyperbolic Channel
Fig. 8CL

Mach Number at Center of Passaqe M=.835

~Final Value of Stream Function

.



. -*

HACA TN No.’932

. #

-.

SW w “
m

.

.45 .60 Figure 6b. .1

b* Ios

T

-M =-i

I*

.90



.
lug. 6C

-.

,

9

.

.

●

d

.

#&i
42+1. 43

*2

-
04

77

P
ma 3f

m

—



I

.

,

-1?4 +2 -1.p + p -4 -.2 Q .2 .fl $ .8 [,0 1.? Ip ~=

Flow of Compressible Fluid in Hyperbolic Channel
g

Mach Number at Center of Channel =,835
+

“..2
-H

z

h
~

.

UI
(s

,. N

Streamlines

Constant Mach Number Lines —
.

M= Mach Number

. .._- ----

ZI

K
.

.2 .4 . 6 .8 LO l.~ 1.4 ‘m

i.
.-



a ●

● , .

*

b

I
,

4

-[,4 -1.,2 -1.0. -.8 -.6 -.4 -.2 Q .2 .4 .6 .8 LO 1.2 1.4 ~
x~

z=
Flow of Compressible Fluid in Hyperbolic Channel

- ?::::~l

‘, r

streamlines of Incompressible Flow- -----

M=Mach Number

$

k z
II

-;1.4 -1,2 -1,0 -.5 -.,6 -$ -.? o:,
,

Fiq.9.

,1

,, .,,,
#



‘1

-1.4 -1.2 -1.0 -.8 -.6 .4 -.2

Flow of Compressible Fluid in Hyperbolic Channel

Normal Shock -.---. Y.-
Streurnlines of Incompressible Flow ------- \
M=Mach Number

hi

-4 .7.L-----------l– -—-~--, &d.

-1,4 -12 -Lo .8 -.6 -.fl :, 2 Q .? 4 ,6 .0 10 L2 1,4 ~ g

Fiq. [0
1

-$

1



I

I
.

.s . .

* s b, %-’, ’4’.-. “*’;

I

!:



I



I

1
,,



.1

●

-.

. .

●

✌

✎

,

73

.

HAOA Tli No. 9-32 (1 block= 10/25”) Fig. 15

Mach Number—M

BUgure 15 — -5

. --



‘1
*

I

‘4
I .IIIIO

I

I
4

I

It \

~[,1
\

~ z v ‘/i

I t
~ ‘

\ 1= /
~ / ‘ ‘r

Pi ~8 16
Wave Anale -El

~ ‘ — 1-

‘“%(Y 35”” 40” 4s , 50” 55” 60” 65” 7(39. 75” 80” 85” 90” m

.
I

,, II



I

–7= 1.400

~ =Speci fic Entropy ‘Increase
.

.

.

.2

.5 ~ #

-E

2
/$. s. u

s

.

/ @



*

,



.

I

.

1

“o ;1 ,2 ,3” .4 .5 .6 .7 .8 .9 lb [;1 1.2 13 1.4 1$- ‘

I



.

.

Ij

-0 .05 .10 .[5 .20 .25 .3Q .35 Ah .4”5 .50 .5”5 .ti



Computation Curve I O

:
>
~

9 _ - 2.

:

●

. .
@-

.7
Pressure Ratio vs. Vel

—and Specific Entropy- -

6 –
t+$-.y

:=(@!+)- e

1 I
n

7= 1.400

.5JJ

m’
9

—a.,-

%
.4- %.

s

- ~ “-

. L _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _
.

.

.1’-

Velocity- Q Figl re 21
.

w00 ;,
.2 .3 .4. .5 .6 .7 .6 .6 [0 1.1 1.2 13 (.4 1.5 P



.,



i-



.eJ

14

s

NACA fru No. 93a (1 blook - 10/32n)~ Figm. 24,26

.7-
Computatlon Curve 13

D~namic Pres sure vs. Ma!h Number
. ..

%~’ = ~ M? I + ~ M’)-+.

7=1.400

r A#!=o.

-:
/ ~

~
.

L / ~
● .7 \

L
3 /
WI

. g.

n
‘.g
E

.
‘c

- aA- T .:;’ ~
,.

.

1.6 [.8 2.0
Figure a4. -

1.00\ Computation Curve
*

II
14

Tots I Head Ratio .vs. pecific Entropy Change_

“w

a = g.y “l””
.95’- .Pg. ;

7“’= i~4m
., .,. , -1 ;., ‘:

&-iSpecif ic Entropy- Increase\ 1,.,::
\. , p= Total Head Before S,hock–

i ~=~ofa;l Head Aft er shock
I

_l
, . . -;,,, ,.

\
,,,

0.- I ““-,
—-6 L 1

.8!5-u
—=0 ,,

0 ,“
– f. . . _ _ _ _ _ _ _ _ _ _ _ _ _ _

.80 - ;
z .
1- .

1 ..
, ::~,,,

.

Specific Entropy Increase - ~

‘cl .02 .04 .06 .Oqiwre ~50 .12 .14 .[6 .[8 .20.-

.—

— .—
1


